Stator Slot Insulation Machine



Generator Stator Slot Cell Inserter Insulation Paper Inserting Machine WIND-100-SI Application This slot cell forming and inserting machine WIND-100-SI stator insulation paper form cut and inserting insulation. Stator slot insulation inserting machine WIND-100-SI insert paper to stator slot line by machine. Laminated thickness of stator. Lamina espessura: 10mm-100mm. Max outer diameter of stator: Φ 200mm Diameter of stator: Φ 15mm- Φ 90mm Height of edge folded: 2.5mm-5mm Max insulation paper's thickness: 0.3mm Feeding length: 12mm-45mm. The horizontal type stator slot insulation paper is suitable to produce big stator. T his paper inserting machine was supplied to respected Yamaha and other honored customers. One of the important manufacturing process for motor stator including coil winding, stator slot liner insulation, winding and wedge insertion, forming, binding. The next video is starting stop. Alibaba offers 8 Electric Motors Slot Insulation Machines Suppliers, and Electric Motors Slot Insulation Machines Manufacturers, Distributors, Factories, Companies. There are 1 ODM, 3 Self Patent, 1 Self Brand. Find high quality Electric Motors Slot Insulation Machines Suppliers on Alibaba.

Design of Stator

Stator of an induction motor consists of stator core and stator slots.

Stator slots: in general two types of stator slots are employed in induction motors viz, open clots and semiclosed slots. Operating performance of the induction motors depends upon the shape of the slots and hence it is important to select suitable slot for the stator slots.

(i)Open slots: In this type of slots the slot opening will be equal to that of the width of the slots as shown in Fig 10. In such type of slots assembly and repair of winding are easy. However such slots will lead to higher air gap

contraction factor and hence poor power factor. Hence these types of slots are rarely used in 3Φ induction motors.

(ii)Semiclosed slots: In such type of slots, slot opening is much smaller than the width of the slot as shown in Fig 10 and Fig 11. Hence in this type of slots assembly of windings is more difficult and takes more time compared to open slots and hence it is costlier. However the air gap characteristics are better compared to open type slots.

(iii)Tapered slots: In this type of slots also, opening will be much smaller than the slot width. However the slot width will be varying from top of the slot to bottom of the slot with minimum width at the bottom as shown in Fig. 10.



Selection of number of stator slots: Number of stator slots must be properly selected at thedesign stage as such this number affects the weight, cost and operating characteristics of the motor. Though there are no rules for selecting the number of stator slots considering the advantages and disadvantages of selecting higher number slots comprise has to be set for selecting the number of slots. Following are the advantages and disadvantages of selecting higher number of slots.

Advantages :(i) Reduced leakage reactance.

(ii)Reduced tooth pulsation losses.

(iii)Higher over load capacity.

Disadvantages:

(i)Increased cost

(ii)Increased weight

(iii)Increased magnetizing current

(iv)Increased iron losses

(v)Poor cooling

(vi)Increased temperature rise

(vii)Reduction in efficiency

Based on the above comprise is made and the number of slots/pole/phase may be selected as three or more for integral slot winding. However for fractional slot windings number of slots/pole/phase may be selected as 3.5. So selected number of slots should satisfy the consideration of stator slot pitch at the air gap surface, which should be between1.5 to 2.5 cm.

Stator slot pitch at the air gap surface = τss= πD/Sss where Sss is the number of stator slots

Turns per phase

EMF equation of an induction motor is given by Eph= 4.44fΦTphkw

Hence turns per phase can be obtained from emf equation Tph = Eph/ 4.44fΦkw

Generally the induced emf can be assumed to be equal to the applied voltage per phase

Flux/pole, = Bav x πDL/P,

winding factor kw may be assumed as 0.955 for full pitch distributed winding unless otherwise specified.

Number conductors /phase, Zph = 2 x Tph, and hence Total number of stator conductors Z = 6 Tph and conductors /slot Zs = Z/Ss or 6 Tph/Ss , where Zsis an integer for single layer winding and even number for double layer winding.

Conductor cross section: Area of cross section of stator conductors can be estimated from thestator current per phase and suitably assumed value of current density for the stator windings.

Sectional area of the stator conductor as = Is/δs where δs is the current density in stator windings

Stator current per phase Is = Q / (3Vph cos ϕ)

A suitable value of current density has to be assumed considering the advantages and disadvantages.

Advantages of higher value of current density:

(i)reduction in cross section

(ii)reduction in weight

(iii)reduction in cost

Disadvantages of higher value of current density

(i)increase in resistance

(ii)increase in cu loss

(iii)increase in temperature rise

(iv)reduction in efficiency

Hence higher value is assumed for low voltage machines and small machines. Usual value of current density for stator windings is 3 to 5 amps.

Based on the sectional area shape and size of the conductor can be decided. If the sectional area of the conductors is below 5 mm2 then usually circular conductors are employed. If it is above 5 mm2 then rectangular conductors will be employed. Standard bare size of round and rectangular conductors can be selected by referring the tables of conductors given in Design data Hand book. In case of rectangular conductors width to thickness ratio must be between 2.5 to 3.5.

Area of stator slot: Slot area is occupied by the conductors and the insulation. Out ofwhich almost more than 25 % is the insulation. Once the number of conductors per slot is decided approximate area of the slot can be estimated.

Slot space factor = Copper area in the slot /Area of each slot

This slot space factor so obtained will be between 0.25 and 0.4. The detailed dimension of the slot can be estimated as follows.

Size of the slot: Normally different types of slots are employed for carrying statorwindings of induction motors. Generally full pitched double layer windings are employed for stator windings. For double layer windings the conductor per slot will be even. These conductors are suitably arranged along the depth and width of the winding. Stator slots should not be too wide, leading to thin tooth width, which makes the tooth mechanically weak and maximum flux density may exceed the permissible limit. Hence slot width should be so selected such that the flux density in tooth is between 1.6 to 1.8 Tesla. Further the slots should not be too deep also other wise the leakage reactance increases. As a guideline the ratio of slot depth to slot width may assumed as 3 to 5. Slot insulation details along the conductors are shown in Fig. 12.


Proper slot insulation as per the voltage rating of the machine has to be provided before inserting the insulated coil in the slots. This slot insulation is called the slot liner, thickness of which may be taken as 0.5 mm to 0.7 mm. Suitable thickness of insulation called coil separator separates the two layers of coils. Thickness of coil separator is 0.5 mm to 0.7 mm for low voltage machines and 0.8 mm to 1.2 mm for high voltage machines. Wedge of suitable thickness (3.5 mm to 5 mm) is placed at the top of the slot to hold the coils in position. Lip of the slot is taken 1.0 to 2.0 mm. Figure 13 shows the coils placed in slots.



Length of the mean Turn:

Length of the mean turn is calculated using an empirical formula lmt = 2L + 2.3 τp + 0.24 where L is the gross length of the stator and τp is pole pitch in meter.

Resistance of stator winding: Resistance of the stator winding per phase is calculated usingthe formula = (0.021 x lmt x Tph ) / as where lmt is in meter and as is in mm2. Using so calculated resistance of stator winding copper losses in stator winding can be calculated as

Total copper losses in stator winding = 3 (Is)2 rs

Flux density in stator tooth: Knowing the dimensions of stator slot pitch, width of the slotand width of the stator tooth flux density in the stator tooth can be calculated. The flux density in the stator tooth is limited to 1.8 Tesla. As the stator tooth is tapering towards the bottom, the flux density is calculated at 1/3rd height from the narrow end of the tooth. The flux density at the 1/3rd height from the narrow end of the tooth can be calculated as follows.

Diameter at 1/3rd height from narrow end D' = D + 1/3 x hts x 2

Slot pitch at 1/3rd height = τ's = π x D' /Ss

Tooth width at this section = b't = τ's – bs

Area of one stator tooth = a't = b't x li

Area of all the stator tooth per pole A't = b't x li x number of teeth per pole

Mean flux density in stator teeth B't = Φ / A't

Maximum flux density in the stator teeth may be taken to be less than 1.5 times the above value.

Depth of stator core below the slots: There will be certain solid portion below the slots in thestator which is called the depth of the stator core. This depth of the stator core can be calculated by assuming suitable value for the flux density Bc in the stator core. Generally the flux density in the stator core may be assumed varying between 1.2 to 1.4 Tesla. Depth of the stator core can be calculated as follows.

Flux in the stator core section Φc = ½ Φ

Area of stator core Ac = Φ/2Bc

Area of stator core Ac = Li x dcs

Hence, depth of the core = Ac / Li

Using the design data obtained so far outer diameter of the stator core can be calculated as

Do = D + 2hss = 2 dcs where hss is the height of the stator slot.

Slot

Automatic Slot insulation paper inserting machine for electric motor stator

1. A special design specific to different design or different sizes of slot;
2. can finish insulation paper insertion at a time; automatic adjustment to perimeter , automatic cutting paper, automatic hemming and automatic inserting when inserting to various or different-sized slot;
3. use servo paper inserting machine to feed paper and settle breadth;
4. interpersonal interface sets required specific parameter;
5. forming mold is adjustable to different sizes of slot automatically;
6. characterized by simple operation, low noise, fast speed and high automaticity.

1. Introduction:

The slot insulation paper inserting machine is used for electric motor stator manufacturing, suitable for different design or different sizes of stator slot. It not only has the insulation paper forming function, but also can push the clamped insulation paper into a groove of the motor stator, has efficient automatic performance, and puts an end to the low efficiency working manner of manual insertion.

2. Working principle:

The automatic insulation paper inserting machine is mainly includes a paper feeding device, an indentation device and a cutting device. A insulation paper guide slot is arranged between the indentation device and the cutting device; a paper pushing mechanism is matched with the cutting device; after the paper feeding device sends out a piece of insulation paper, the insulation paper passes through the indentation device, the paper guide slot and the cutting device sequentially, and then is pushed out of the cutting device by the paper pushing mechanism; the insulation paper finally enters the motor stator clamped on a stator clamping workbench on a side surface of the working platform; the stator clamping workbench is connected with the working platform via a rotating shaft, and can turn over around the rotating shaft.

3. Features:

It can finish insulation paper insertion at a time;

Stator Slot Insulation Machines

Automatic adjustment to perimeter, automatic cutting paper, automatic hemming and automatic inserting when inserting to various or different-sized slot;

Use servo paper inserting machine to feed paper and settle breadth;

Interpersonal interface sets required specific parameter;

Forming mould is adjustable to different sizes of slot automatically;

The equipment adopts programmable terminal, also called touched screen, that can set and display necessary information,

Simple operation and reliable, low noise, fast speed and high automaticity.

4. Technical data:

Product name:Automatic stator insulation paper inserting machine
Stator stack length:20~160mm
Stator OD:max 190mm
Stator ID:50~120mm
Folding height/width:2~4mm/4~7mm
Insulation paper thickness:0.188~0.35mm
Efficiency:≈0.8s/s
Power:380V/50/60HZ 0.75KW
Machine weight:≈250kg
Machine dimension:(L) 1200*(W) 650*(H) 1200mm

5. Application:

This Stator Insulation Paper Inserting Machine is suitable for single phase motor, three phase motor, induction motor, washing machine motor, fan motor, gasoline generator, etc.

(6) Company Profile - Suzhou Smart motor Equipment Manufacturing Co.,Ltd

Suzhou Smart motor Equipment Manufacturing Co.,Ltd is a Chinese manufacturer, which is specialize in R&D, manufacturing and selling automatic equipments for motor production as well as exporting equipments to the world. The company now has nearly 81 employees including more than 10 engineers and technicians, with the building area about 5,000 square meters and hundered sets of advanced production and equipments under testing.

SMT @ Social Media:

Stator Slot Insulation Machine Home Depot

Facebook; https://www.facebook.com/smtoer
Youtube; https://www.youtube.com/channel/UCDYIgBNVk7cWted0vGAst2A
Twitter; https://twitter.com/SMT_Winding
Linkedin; https://www.linkedin.com/company/suzhou-smart-motor-equipment-manufacturing-co.-ltd?trk=biz-companies-cym
Google+; https://plus.google.com/u/0/b/117852957012692456750/117852957012692456750